Part Number Hot Search : 
WM881604 TA7745P T24C02 LC89052T AD8659 IRF280 XCM517 FS8N60
Product Description
Full Text Search
 

To Download V23990-P589-A31-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  V23990-P589-A31-PM preliminary datasheet flowpim 1 3rd gen 1200v / 25a 3~ rectifier, brc, inverter, ntc very compact housing, easy to route igbt2 phantom speed / emcon4 technology lower losses than igbt3 or 4 for f sw > 8khz motor drives with 8khz < f sw < 30khz low audible noise applications (f sw > 16khz) high efficiency applications centered aircon, fans, pumps V23990-P589-A31-PM tj=25c, unless otherwise specified parameter symbol value unit peak repetitive reverse voltage v rrm 1600 v maximum junction temperature t j max 150 c inverter transistor t h =80c t h =80c 27 67 75 t h =80c t h =80c 36 40 510 t j =45c t j =t j max t j =t j max 1200 20 w a collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c 150 t j =t j max features flowpim1 housing target applications schematic t p =10ms 320 input rectifier diode p tot a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max a v c v maximum junction temperature power dissipation per igbt v ge t j max p tot gate-emitter peak voltage t p limited by t j max a w dc forward current surge forward current power dissipation per diode i 2 t copyright vincotech 1 revision: 1
V23990-P589-A31-PM preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode brc transistor 1200 t sc t j 150c 10 s v cc v ge =15v 800 v brc diode 1200 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm 20 t h =80c t h =80c 10 20 21 t h =80c 15 39 45 t h =80c 21 37 t h =80c 50 t p limited by t j max t j =t j max 175 t j max v a v c w a collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage maximum junction temperature short circuit ratings dc collector current power dissipation per igbt 175 maximum junction temperature c v 1200 v ge t j =t j max w a v a power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm t p limited by t j max v rrm p tot v ce i cpuls t j =t j max i c i frm t j max repetitive peak forward current v rrm peak repetitive reverse voltage w power dissipation per diode p tot dc forward current a t j =t j max t p limited by t j max a i f t h =80c peak repetitive reverse voltage c maximum junction temperature t j max 175 -40?+(tjmax - 25) c storage temperature t stg -40?+125 c clearance insulation voltage creepage distance t op operation temperature under switching condition copyright vincotech 2 revision: 1
V23990-P589-A31-PM preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0.8 1.29 1.6 t j =125c 1.24 t j =25c 0.93 t j =125c 0.82 t j =25c 7 t j =125c 9 t j =25c 0.02 t j =150c 2 thermal resistance chip to heatsink per chip r thjh 1.77 thermal resistance chip to case per chip r thjc n/a t j =25c 4.5 5.5 6.5 t j =125c t j =25c 1.5 2.13 2.75 t j =125c 2.32 t j =25c 0.01 t j =125c t j =25c 200 t j =125c t j =25c 136 t j =125c 137 t j =25c 13.2 t j =125c 15.8 t j =25c 201 t j =125c 235 t j =25c 58 t j =125c 99 t j =25c 0.94 t j =125c 1.32 t j =25c 1.17 t j =125c 1.74 thermal resistance chip to heatsink per chip r thjh 1.05 thermal resistance chip to case per chip r thjc n/a t j =25c 1.3 1.9 2.2 t j =150c 1.89 t j =25c 60 t j =125c 65 t j =25c 84 t j =125c 153 t j =25c 2.68 t j =125c 4.64 di ( rec ) max t j =25c 4514 /d t t j =125c 2719 t j =25c 1.25 t j =125c 2.14 thermal resistance chip to heatsink per chip r thjh 1.92 thermal resistance chip to case per chip r thjc n/a na tj=25c - v v 0 1200 600 i ges f=1mhz t d(on) c rss c oss r gint t f e on v ge(th) v ce(sat) i ces vce=vge reverse transfer capacitance c ies q rr t rr v f erec peak reverse recovery current e off t r t d(off) gate-emitter leakage current input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage turn-on energy loss per pulse collector-emitter cut-off current incl. diode turn-off delay time turn-on delay time rise time 50 50 conditions slope resistance (for power loss calc. only) v f v to r t characteristic values forward voltage threshold voltage (for power loss calc. only) input rectifier diode value 50 k/w v v m ? ma reverse current i r 1600 rgon=16 ? 0 20 15 fall time 15 25 25 reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge i rrm inverter diode diode forward voltage integrated gate resistor inverter transistor gate emitter threshold voltage rgoff=16 ? 15 600 25 25 0 thermal grease thickness ? 50 m =0.61w/mk 25 0.001 rgoff=16 ? 64 2020 193 pf mws ? ns ns v a  c mws a/  s ma thermal grease thickness ? 50 m =0.61w/mk k/w thermal grease thickness ? 50 m =0.61w/mk k/w copyright vincotech 3 revision: 1
V23990-P589-A31-PM preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max conditions characteristic values value t j =25c 5 5.8 6.5 t j =150c t j =25c 1.6 1.88 2.2 t j =150c 2.30 t j =25c 0.005 t j =150c t j =25c 200 t j =150c - t j =25c 87 t j =125c 87 t j =25c 24 t j =125c 28 t j =25c 194 t j =125c 256 t j =25c 77 t j =125c 102 t j =25c 0.95 t j =125c 1.29 t j =25c 0.82 t j =125c 1.17 thermal resistance chip to heatsink per chip r thjh 1.8 thermal resistance chip to case per chip r thjc n/a t j =25c 1.3 1.85 2.2 t j =150c 1.76 t j =25c 5 t j =150c t j =25c 10 t j =125c 12 t j =25c 324 t j =125c 489 t j =25c 1.38 t j =125c 2.27 di ( rec ) max t j =25c 46 /d t t j =125c 46 t j =25c 0.58 t j =125c 0.96 thermal resistance chip to heatsink per chip r thjh 3.28 thermal resistance chip to case per chip r thjc n/a t j =25c 20.9 22 23.1 t j =125c 0.75 v v mws c v pf  a ns a/ s a k/w ma k  3950 0.3 tj=25c tj=25c 120 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage fall time collector-emitter cut-off incl. diode gate emitter threshold voltage gate charge input capacitance rise time turn-off delay time t d(off) r gint turn-off energy loss per pulse q gate t f 0.0005 15 15 peak rate of fall of recovery current peak reverse recovery current reverse recovered charge output capacitance c rss c ies integrated gate resistor reverse transfer capacitance e off turn-on energy loss per pulse turn-on delay time t d(on) t r c oss e on k/w nc brc transistor k power dissipation p mw 200 rated resistance r b-value b (25/50) tol. 3% operating current i reverse recovery energy v f i r t rr q rr e rec reverse recovery time i rrm diode forward voltage rgoff=32  rgon=32  vce=vge thermal grease thickness 50 m  =0.61w/mk i ges 15 0 20 80 vcc=960v 0 f=1mhz 15 ma na 0  ns mws 900 reverse leakage current brc diode thermistor thermal grease thickness 50 m  =0.61w/mk 15 15 15 600 10 10 1200 600 600 25 10 15 55 tj=25c tj=25c tj=25c rgon=32  copyright vincotech 4 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 15 30 45 60 75 012345 v ce (v) i c (a) 0 5 10 15 20 25 30 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 012345 v ce (v) i c (a) copyright vincotech 5 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 25 a r goff = 16 ? figure 7 output inverter igbt figure 8 output inverter igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 25 a output inverter t j = t jmax - 25c e on e off e on e off t j = 25c 0 0.5 1 1.5 2 2.5 3 3.5 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) e off t j = t jmax - 25c e on t j = 25c e on e off 0 0.5 1 1.5 2 2.5 3 3.5 0 1530456075 r g ( ) e (mws) t j = t jmax -25c t j = 25c e rec 0 0.5 1 1.5 2 2.5 3 0 5 10 15 20 25 30 35 40 45 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0.5 1 1.5 2 2.5 3 0 1530456075 r g ( ) e (mws) copyright vincotech 6 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 25 a r goff = 16 ? figure 11 output inverter fred figure 12 output inverter fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 16 ? v ge = 15 v output inverter t doff t f t don t r 0.001 0.01 0.1 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t ( s) t rr t j = t jmax -25c t rr t j = 25c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 1530456075 r gon ( ) t rr ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 1530456075 r g ( ) t ( s) t j = t jmax -25c t rr t rr t j = 25c 0 0.05 0.1 0.15 0.2 0.25 0 5 10 15 20 25 30 35 40 45 50 i c (a) t rr ( s) copyright vincotech 7 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 13 output inverter fred figure 14 output inverter fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 16 ? v ge = 15 v figure 15 output inverter fred figure 16 output inverter fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 16 ? v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 20 40 60 80 100 0 1530456075 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 7 0 1530456075 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 20 40 60 80 100 0 5 10 15 20 25 30 35 40 45 50 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40 45 50 i c (a) q rr ( c) copyright vincotech 8 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 17 output inverter fred figure 18 output inverter fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 16 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1.05 k/w rthjh = 1.05 k/w r thjh = 1.92 k/w rthjh = 1.92 k/w single device heated ali devices heated single device heated ali devices heated igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) r (c/w) tau (s) r (c/w) 0.09 2.6e+00 0.09 0.04 9.5e+00 0.04 0.42 3.2e-01 0.42 0.21 7.9e-01 0.21 0.41 8.5e-02 0.41 0.80 1.3e-01 0.80 0.09 1.0e-02 0.09 0.51 2.8e-02 0.51 0.04 6.4e-04 0.04 0.21 4.1e-03 0.21 0.14 4.5e-04 0.14 output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax - 25c di 0 /dt di rec /dt t j = 25c 0 1000 2000 3000 4000 5000 6000 0 1530456075 r gon ( ) di rec / dt (a/ s) t j = t jmax - 25c di 0 /dt t j = 25c 0 1000 2000 3000 4000 5000 6000 0 5 10 15 20 25 30 35 40 45 50 i c (a) di rec / dt (a/ s) di rec /dt copyright vincotech 9 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c single heating t j = 150 c overall heating v ge = 15 v figure 23 output inverter fred figure 24 output inverter fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 c single heating t j = 150 c overall heating output inverter 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 25 output inverter igbt safe operating area as a function of collector-emitter voltage i c = f(v ce ) at d = single pulse th = 80 oc v ge = 15 v t j =t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100m dc 10 0 10 3 copyright vincotech 11 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 10 20 30 40 50 012345 v ce (v) i c (a) 0 3 6 9 12 15 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 00.511.522.53 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 012345 v ce (v) i c (a) copyright vincotech 12 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 7 brake igbt figure 8 brake igbt typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0.3 0.6 0.9 1.2 1.5 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0.3 0.6 0.9 1.2 1.5 0 30 60 90 120 150 r g ( ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 0.5 1 1.5 2 2.5 3 3.5 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 0.5 1 1.5 2 2.5 3 0 30 60 90 120 150 r g ( ) e (mws) copyright vincotech 13 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 11 brake igbt figure 12 brake fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1.80 k/w r thjh = 3.28 k/w brake t doff t f t don t r 0.001 0.01 0.1 1 0 5 10 15 20 25 30 i c (a) t ( s) t doff t f t don t r 0.001 0.01 0.1 1 0 30 60 90 120 150 r g ( ) t ( s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 14 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 oc t j = 150 oc v ge = 15 v figure 15 brake fred figure 16 brake fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc brake 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) p tot (w) 0 2 4 6 8 10 12 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 15 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 1.770 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 30 60 90 120 150 0 0.5 1 1.5 2 2.5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 16 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? copyright vincotech 17 revision: 1
V23990-P589-A31-PM preliminary datasheet t j 125 c r g on 16 ? r goff 16 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of tdoff, teoff turn-on switching waveforms & definition of tdon, teon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t doff = 0.24 s t don = 0.14 s t eoff = 0.39 s t eon = 0.36 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t f = 0.10 s t r = 0.02 s switching definitions output inverter general conditions = = = i c 1% u ce 90% u ge 90% -20 0 20 40 60 80 100 120 140 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 time (us) % t doff t eoff uce ic u ge ic 10% uge 10% t don u ce3% -60 0 60 120 180 240 300 360 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 time(us) % ic uce t eon uge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 time (us) % uce ic t f i c10% ic90% -60 0 60 120 180 240 300 360 2.9 3 3.1 3.2 3.3 3.4 time(us) % tr uce ic copyright vincotech 18 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 14.95 kw p on (100%) = 14.95 kw e off (100%) = 1.74 mj e on (100%) = 1.32 mj t eoff = 0.39 s t eon = 0.36 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 25 a v c (100%) = 600 v i rrm (100%) = -65 a i c (100%) = 25 a t rr = 0.15 s q g = 1175.08 nc switching definitions output inverter ic 1% uge90% -20 0 20 40 60 80 100 120 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 time (us) % poff eoff teoff u ce3% u ge10% -50 0 50 100 150 200 250 2.9 3 3.1 3.2 3.3 3.4 3.5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 300 qg (nc) uge (v) i rrm 10% i rrm 90% i rrm 100% trr -280 -240 -200 -160 -120 -80 -40 0 40 80 120 3 3.1 3.2 3.3 3.4 3.5 time(us) % id ud fitted copyright vincotech 19 revision: 1
V23990-P589-A31-PM preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 25 a p rec (100%) = 14.95 kw q rr (100%) = 4.64 c e rec (100%) = 2.14 mj t qrr = 1.00 s t erec = 1.00 s switching definitions output inverter t qrr -300 -250 -200 -150 -100 -50 0 50 100 150 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 time(us) % id q r r -20 10 40 70 100 130 160 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 time(us) % p rec erec te rec copyright vincotech 20 revision: 1
V23990-P589-A31-PM preliminary datasheet outline pinout package outline and pinout copyright vincotech 21 revision: 1
V23990-P589-A31-PM preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. copyright vincotech 22 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-P589-A31-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X